Copied to
clipboard

G = C42.240D10order 320 = 26·5

60th non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.240D10, (C4×D5)⋊9D4, C4⋊Q819D5, C4.38(D4×D5), C206(C4○D4), C20.70(C2×D4), C204D417C2, C4⋊D2039C2, C4⋊C4.217D10, C41(Q82D5), D10.20(C2×D4), (D5×C42)⋊14C2, D208C443C2, (C2×Q8).144D10, C10.99(C22×D4), C20.23D426C2, (C2×C10).269C24, (C2×C20).102C23, (C4×C20).210C22, Dic5.122(C2×D4), (C2×D20).178C22, C56(C22.26C24), (Q8×C10).136C22, C22.290(C23×D5), D10⋊C4.50C22, (C2×Dic5).282C23, (C4×Dic5).289C22, (C22×D5).119C23, C2.72(C2×D4×D5), (C5×C4⋊Q8)⋊11C2, (C2×Q82D5)⋊12C2, C10.120(C2×C4○D4), C2.27(C2×Q82D5), (C2×C4×D5).152C22, (C5×C4⋊C4).212C22, (C2×C4).599(C22×D5), SmallGroup(320,1397)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.240D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C42 — C42.240D10
C5C2×C10 — C42.240D10
C1C22C4⋊Q8

Generators and relations for C42.240D10
 G = < a,b,c,d | a4=b4=d2=1, c10=b2, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=b2c9 >

Subgroups: 1230 in 310 conjugacy classes, 111 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C42, C4×D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22×D5, C22.26C24, C4×Dic5, C4×Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, Q82D5, Q8×C10, D5×C42, C204D4, D208C4, C4⋊D20, C20.23D4, C5×C4⋊Q8, C2×Q82D5, C42.240D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C22×D5, C22.26C24, D4×D5, Q82D5, C23×D5, C2×D4×D5, C2×Q82D5, C42.240D10

Smallest permutation representation of C42.240D10
On 160 points
Generators in S160
(1 137 110 74)(2 75 111 138)(3 139 112 76)(4 77 113 140)(5 121 114 78)(6 79 115 122)(7 123 116 80)(8 61 117 124)(9 125 118 62)(10 63 119 126)(11 127 120 64)(12 65 101 128)(13 129 102 66)(14 67 103 130)(15 131 104 68)(16 69 105 132)(17 133 106 70)(18 71 107 134)(19 135 108 72)(20 73 109 136)(21 156 93 41)(22 42 94 157)(23 158 95 43)(24 44 96 159)(25 160 97 45)(26 46 98 141)(27 142 99 47)(28 48 100 143)(29 144 81 49)(30 50 82 145)(31 146 83 51)(32 52 84 147)(33 148 85 53)(34 54 86 149)(35 150 87 55)(36 56 88 151)(37 152 89 57)(38 58 90 153)(39 154 91 59)(40 60 92 155)
(1 88 11 98)(2 99 12 89)(3 90 13 100)(4 81 14 91)(5 92 15 82)(6 83 16 93)(7 94 17 84)(8 85 18 95)(9 96 19 86)(10 87 20 97)(21 115 31 105)(22 106 32 116)(23 117 33 107)(24 108 34 118)(25 119 35 109)(26 110 36 120)(27 101 37 111)(28 112 38 102)(29 103 39 113)(30 114 40 104)(41 79 51 69)(42 70 52 80)(43 61 53 71)(44 72 54 62)(45 63 55 73)(46 74 56 64)(47 65 57 75)(48 76 58 66)(49 67 59 77)(50 78 60 68)(121 155 131 145)(122 146 132 156)(123 157 133 147)(124 148 134 158)(125 159 135 149)(126 150 136 160)(127 141 137 151)(128 152 138 142)(129 143 139 153)(130 154 140 144)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 25)(22 24)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(41 160)(42 159)(43 158)(44 157)(45 156)(46 155)(47 154)(48 153)(49 152)(50 151)(51 150)(52 149)(53 148)(54 147)(55 146)(56 145)(57 144)(58 143)(59 142)(60 141)(61 134)(62 133)(63 132)(64 131)(65 130)(66 129)(67 128)(68 127)(69 126)(70 125)(71 124)(72 123)(73 122)(74 121)(75 140)(76 139)(77 138)(78 137)(79 136)(80 135)(81 89)(82 88)(83 87)(84 86)(90 100)(91 99)(92 98)(93 97)(94 96)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)

G:=sub<Sym(160)| (1,137,110,74)(2,75,111,138)(3,139,112,76)(4,77,113,140)(5,121,114,78)(6,79,115,122)(7,123,116,80)(8,61,117,124)(9,125,118,62)(10,63,119,126)(11,127,120,64)(12,65,101,128)(13,129,102,66)(14,67,103,130)(15,131,104,68)(16,69,105,132)(17,133,106,70)(18,71,107,134)(19,135,108,72)(20,73,109,136)(21,156,93,41)(22,42,94,157)(23,158,95,43)(24,44,96,159)(25,160,97,45)(26,46,98,141)(27,142,99,47)(28,48,100,143)(29,144,81,49)(30,50,82,145)(31,146,83,51)(32,52,84,147)(33,148,85,53)(34,54,86,149)(35,150,87,55)(36,56,88,151)(37,152,89,57)(38,58,90,153)(39,154,91,59)(40,60,92,155), (1,88,11,98)(2,99,12,89)(3,90,13,100)(4,81,14,91)(5,92,15,82)(6,83,16,93)(7,94,17,84)(8,85,18,95)(9,96,19,86)(10,87,20,97)(21,115,31,105)(22,106,32,116)(23,117,33,107)(24,108,34,118)(25,119,35,109)(26,110,36,120)(27,101,37,111)(28,112,38,102)(29,103,39,113)(30,114,40,104)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(121,155,131,145)(122,146,132,156)(123,157,133,147)(124,148,134,158)(125,159,135,149)(126,150,136,160)(127,141,137,151)(128,152,138,142)(129,143,139,153)(130,154,140,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,25)(22,24)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,160)(42,159)(43,158)(44,157)(45,156)(46,155)(47,154)(48,153)(49,152)(50,151)(51,150)(52,149)(53,148)(54,147)(55,146)(56,145)(57,144)(58,143)(59,142)(60,141)(61,134)(62,133)(63,132)(64,131)(65,130)(66,129)(67,128)(68,127)(69,126)(70,125)(71,124)(72,123)(73,122)(74,121)(75,140)(76,139)(77,138)(78,137)(79,136)(80,135)(81,89)(82,88)(83,87)(84,86)(90,100)(91,99)(92,98)(93,97)(94,96)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)>;

G:=Group( (1,137,110,74)(2,75,111,138)(3,139,112,76)(4,77,113,140)(5,121,114,78)(6,79,115,122)(7,123,116,80)(8,61,117,124)(9,125,118,62)(10,63,119,126)(11,127,120,64)(12,65,101,128)(13,129,102,66)(14,67,103,130)(15,131,104,68)(16,69,105,132)(17,133,106,70)(18,71,107,134)(19,135,108,72)(20,73,109,136)(21,156,93,41)(22,42,94,157)(23,158,95,43)(24,44,96,159)(25,160,97,45)(26,46,98,141)(27,142,99,47)(28,48,100,143)(29,144,81,49)(30,50,82,145)(31,146,83,51)(32,52,84,147)(33,148,85,53)(34,54,86,149)(35,150,87,55)(36,56,88,151)(37,152,89,57)(38,58,90,153)(39,154,91,59)(40,60,92,155), (1,88,11,98)(2,99,12,89)(3,90,13,100)(4,81,14,91)(5,92,15,82)(6,83,16,93)(7,94,17,84)(8,85,18,95)(9,96,19,86)(10,87,20,97)(21,115,31,105)(22,106,32,116)(23,117,33,107)(24,108,34,118)(25,119,35,109)(26,110,36,120)(27,101,37,111)(28,112,38,102)(29,103,39,113)(30,114,40,104)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(121,155,131,145)(122,146,132,156)(123,157,133,147)(124,148,134,158)(125,159,135,149)(126,150,136,160)(127,141,137,151)(128,152,138,142)(129,143,139,153)(130,154,140,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,25)(22,24)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,160)(42,159)(43,158)(44,157)(45,156)(46,155)(47,154)(48,153)(49,152)(50,151)(51,150)(52,149)(53,148)(54,147)(55,146)(56,145)(57,144)(58,143)(59,142)(60,141)(61,134)(62,133)(63,132)(64,131)(65,130)(66,129)(67,128)(68,127)(69,126)(70,125)(71,124)(72,123)(73,122)(74,121)(75,140)(76,139)(77,138)(78,137)(79,136)(80,135)(81,89)(82,88)(83,87)(84,86)(90,100)(91,99)(92,98)(93,97)(94,96)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113) );

G=PermutationGroup([[(1,137,110,74),(2,75,111,138),(3,139,112,76),(4,77,113,140),(5,121,114,78),(6,79,115,122),(7,123,116,80),(8,61,117,124),(9,125,118,62),(10,63,119,126),(11,127,120,64),(12,65,101,128),(13,129,102,66),(14,67,103,130),(15,131,104,68),(16,69,105,132),(17,133,106,70),(18,71,107,134),(19,135,108,72),(20,73,109,136),(21,156,93,41),(22,42,94,157),(23,158,95,43),(24,44,96,159),(25,160,97,45),(26,46,98,141),(27,142,99,47),(28,48,100,143),(29,144,81,49),(30,50,82,145),(31,146,83,51),(32,52,84,147),(33,148,85,53),(34,54,86,149),(35,150,87,55),(36,56,88,151),(37,152,89,57),(38,58,90,153),(39,154,91,59),(40,60,92,155)], [(1,88,11,98),(2,99,12,89),(3,90,13,100),(4,81,14,91),(5,92,15,82),(6,83,16,93),(7,94,17,84),(8,85,18,95),(9,96,19,86),(10,87,20,97),(21,115,31,105),(22,106,32,116),(23,117,33,107),(24,108,34,118),(25,119,35,109),(26,110,36,120),(27,101,37,111),(28,112,38,102),(29,103,39,113),(30,114,40,104),(41,79,51,69),(42,70,52,80),(43,61,53,71),(44,72,54,62),(45,63,55,73),(46,74,56,64),(47,65,57,75),(48,76,58,66),(49,67,59,77),(50,78,60,68),(121,155,131,145),(122,146,132,156),(123,157,133,147),(124,148,134,158),(125,159,135,149),(126,150,136,160),(127,141,137,151),(128,152,138,142),(129,143,139,153),(130,154,140,144)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,25),(22,24),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(41,160),(42,159),(43,158),(44,157),(45,156),(46,155),(47,154),(48,153),(49,152),(50,151),(51,150),(52,149),(53,148),(54,147),(55,146),(56,145),(57,144),(58,143),(59,142),(60,141),(61,134),(62,133),(63,132),(64,131),(65,130),(66,129),(67,128),(68,127),(69,126),(70,125),(71,124),(72,123),(73,122),(74,121),(75,140),(76,139),(77,138),(78,137),(79,136),(80,135),(81,89),(82,88),(83,87),(84,86),(90,100),(91,99),(92,98),(93,97),(94,96),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R5A5B10A···10F20A···20L20M···20T
order12222222224···44444444444445510···1020···2020···20
size11111010202020202···24444555510101010222···24···48···8

56 irreducible representations

dim1111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D4×D5Q82D5
kernelC42.240D10D5×C42C204D4D208C4C4⋊D20C20.23D4C5×C4⋊Q8C2×Q82D5C4×D5C4⋊Q8C20C42C4⋊C4C2×Q8C4C4
# reps1114421242828448

Matrix representation of C42.240D10 in GL6(𝔽41)

100000
010000
00321800
000900
000010
000001
,
4000000
0400000
0092300
0003200
0000918
0000032
,
34340000
710000
0013900
0014000
00004039
000011
,
770000
40340000
001000
0014000
0000400
000011

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,18,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,23,32,0,0,0,0,0,0,9,0,0,0,0,0,18,32],[34,7,0,0,0,0,34,1,0,0,0,0,0,0,1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[7,40,0,0,0,0,7,34,0,0,0,0,0,0,1,1,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,0,1] >;

C42.240D10 in GAP, Magma, Sage, TeX

C_4^2._{240}D_{10}
% in TeX

G:=Group("C4^2.240D10");
// GroupNames label

G:=SmallGroup(320,1397);
// by ID

G=gap.SmallGroup(320,1397);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,675,570,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=b^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=b^2*c^9>;
// generators/relations

׿
×
𝔽